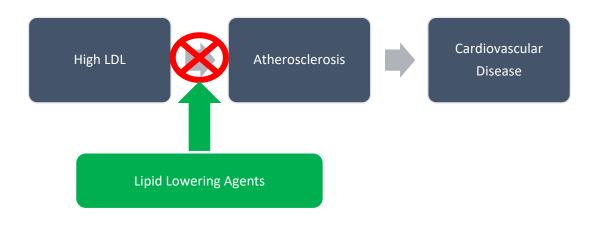
How Low Can You Go? Evaluating the Safety of Low Low-Density Lipoprotein

https://www.tctmd.com/news/ultra-low-ldl-levels-fourier-suggests-efficacy-evolocumab


Brittany La-Viola, PharmD PGY-2 Pharmacotherapy Resident University of the Incarnate Word Feik School of Pharmacy

Learning Objectives:

- 1. Summarize current guidelines available for the treatment of dyslipidemia
- 2. Identify the expected effect of lipid treatment options on low-density lipoprotein
- 3. Assess the evidence for the safety of low low-density lipoprotein
- 4. Using a patient case, formulate a treatment plan for a patient with low low-density lipoprotein

The Use of Lipid Lowering Agents

I. Why We Use Lipid Lowering Agents¹⁻³

II. Goals of Lipid Lowering Therapy³⁻⁷

Guideline	pid Lowering Therapy Goals of therapy
2017 AACE ⁴	 Specific targets based on risk category (see Table 2)
2017 ACC Update ⁵	Refer to 2013 ACC/AHA goals of therapy
	• ≥ 50 % LDL reduction
2015 NLA Part 1 ⁶	Specific targets based on risk category (see Table 3)
2014 VA/DoD ⁷	Do not support the of LDL-C or non-HDL-C goals
2013 ACC/AHA ³	No specific goal of LDL-C or non-HDL-C made
	 Do not recommend for or against the use of specific levels
	ege of Cardiology; AACE: The American Association of Clinical Endocrinologists; AHA; American Heart
Association; NLA: Nation	al Lipid Association; VA/DOD: Veterans Association and Department of Defense

Table 2: 2017 A	ACE LDL-C Treatment Goals ⁴	
Risk Category	Risk Factors/10-year risk	LDL – C goal
Extreme Risk	 Progressive ASCVD including unstable angina in patients after achieving LDL-C < 70 mg/dL Established clinical cardiovascular disease in patients with DM, CKD 3/4, or Heterozygous Familial Hypercholesterolemia (HeFH) History of premature ASCVD (<55 male, <65 female) 	< 55 mg/dL
Very High Risk	 Established or recent hospitalization for ASCVD, coronary, carotid or peripheral vascular disease, 10-year risk >20% Diabetes or CKD 3/4 with 1 or more risk factor(s) HeFH 	< 70 mg/dL
High Risk	 ≥2 risk factors and 10-year risk 10-20% Diabetes or CKD 3/4 with no other risk factors 	< 100 mg/dL
Moderate Risk	≤2 risk factors and 10-year risk <10%	< 100 mg/dL
Low Risk	No risk factors	< 130 mg/dL

Table 3: 2015	National Lipid Association LDL-C Treatment Goals ⁶	
Risk Category	Criteria	LDL – C Treatment Goal
Low	 0 – 1 major ASCVD risk factors* 	< 100 mg/dL
	Consider other risk indicators, if known	
Moderate	2 major ASCVD risk factors	< 100 mg/dL
	 Consider quantitative risk scoring (Framingham Risk Score) 	
	Consider other risk indicators	
High	● ≥ 3 major ASCVD risk factors	< 100 mg/dL
	• Diabetes mellitus (type 1 or 2)	
	 0 – 1 other major ASCVD risk factors 	
	 No evidence of end-organ damage 	
	Chronic kidney disease stage 3B or 4	
	• LDL-C of \geq 190 mg/dL (severe	
	hypercholesterolemia)	
	Quantitative risk score reaching the high-risk	
	threshold (Framingham Risk Score)	
Very High	ASCVD	< 70 mg/dL
	Diabetes mellitus (type 1 or 2)	
	 ≥ 2 other major ASCVD risk factors 	
	 Evidence of end-organ damage** 	
*Risk Factors:	Age (male \geq 45 years old, female \geq 55 years old); family	y history of early CHD (< 55
years of age in	n male 1 st degree relative, < 65 years of age in female :	1 st degree relative); current
cigarette smok	er; high blood pressure (\geq 140/90 mmHg or on blood pre	essure medication); low HDL
(Male < 40 mg/	/dL; Female < 50 mg/dL)	
**Increased all retinopathy	pumin to creatinine ratio (\geq 30 mg/g), CKD (eGFR, < 60 m	L/min/1.73 m ²), or

III. Effect of Lipid Lowering Agents on LDL^{3,5}

Table 4: Lip	id Lowering Agents Role in Therapy and Pr	edicted Lipid Lowering Effec	t
	Statins	Ezetimibe	PCSK-9 Inhibitors
Role in Therapy	 1st line agent Clinical ASCVD LDL - C ≥ 190 mg/dL Diabetes + LDL - C 70 to 189 mg/dL Age 40 - 75 + ASCVD risk 5 to < 7.5 % Age 40 - 75 + ASCVD risk ≥ 7.5 % 	 2nd line agent Clinical ASCVD LDL - C ≥ 190 mg/dL Diabetes + LDL - C 70 to 189 mg/dL Age 40 - 75 + ASCVD risk ≥ 7.5 % 	 2nd line agent Clinical ASCVD LDL – C ≥ 190 mg/dL
Expected % Reduction in LDL	 High: ≥ 50% Moderate: 30 to < 50% Low: < 30% 	< 25 %	> 25 %

Clinical Controversy

- I. Role of Cholesterol in the Body⁸
 - a. Precursor for all steroids in the body
 - I. Sex hormones
 - II. Corticosteroids
 - III. Vitamin D
 - IV. Bile acids
 - b. Essential structure of membranes allows for fluidity and permeability
- II. Definition of Low LDL
 - a. Currently no universally expected definition of low LDL
 - b. 2013 ACC/AHA Guidelines³
 - i. Consider reducing statin when LDL < 40 mg/dL on two consecutive occasions. (Weak recommendation)
- III. Concerns of Low LDL⁹
 - a. Neurocognitive Issues
 - i. Dementia
 - ii. Depression
 - b. Retinal Disorders
 - i. Cataracts
 - c. Hemorrhage strokes
 - d. Cancers
- IV. Clinical Controversy
 - a. What do we do with LDL levels < 40 mg/dL?
 - b. What are the safety concerns for patients who reach low LDL levels?

Literature Review

Objective	Evaluate the safety and ef		<u> </u>	low LDL leve	ls with inten	sive stati	n therapy					
			ethods									
Study Design	Treatment groups of a	-		tatin therapy	/ (atorvastati	in 80 mg	daily) vs.					
	standard therapy (pra											
	Post-hoc analysis that	-				-						
	Subgroups at 4 month	าร: LDL 81-10	0 mg/dL, 61	L-80 mg/dL, 4	11-60 mg/dL	, and ≤ 40	0 mg/dL					
	 Very low LDL levels defined as LDL < 60 mg/dL 											
Patient Selection	Inclusion:		<u>Ex</u>	clusion:								
	• Within 10 days of ACS	; ;	•	Treated w	ith standard	therapy						
	Patients who achieved	d LDL < 100 r	ng/dL 🛛 🔸	Patients w	ho did not a	chieve L[DL < 100 mg					
	at 4 months			at 4 montl	าร							
	Treated with intensive	e statin thera	ару									
Outcomes	Efficacy: composite of de	ath, myocard	dial infarctio	on (MI), strok	e, revascula	rization,	and unstab					
	angina requiring hospitaliz					-						
	Safety: hemorrhage strok	e, liver-relate	ed events, m	nuscle-relate	d events, an	d retinal	adverse ev					
Statistical Analysis	81-100 mg/dL referen											
-	Chi-square used for tr		ety, efficacv	and baseline	e characteris	tics						
	Kaplan-Meier used fo											
	diabetes, prior history of myocardial infarction (MI), baseline LDL levels and smoking status)											
			ults									
Baseline	 1,756 patients met treatment goal of LDL < 100 mg/dL Concomitant Medications 											
Characteristics	-	ng/dL: 256 pa		oo mg/ al	Medication Percentag							
		g/dL: 576 pat			Aspirin	93						
					Warfarin	8						
		 41-60 mg/dL: 631 patients ≤ 40 mg/dL: 193 patients 										
		Clopidogrel o ticlodipine										
					ACE inhibito	rs	69					
			14									
	Selected Baseline	Characteristic	s Based on A	chieved LDL L	evel in (mg/d	L)						
		enaraeteristie										
	Characteristic	81-100	61-80	41-60	≤ 40	p-value						
	Characteristic	81-100 (256)	(576)	(631)	(193)							
	Characteristic Age, median	81-100 (256) 55 (49, 63)	(576) 56 (50, 65)	(631) 58 (52, 66)	(193) 59 (51, 69)	0.0006	_					
	Characteristic Age, median Female	81-100 (256) 55 (49, 63) 24	(576) 56 (50, 65) 24	(631) 58 (52, 66) 17	(193) 59 (51, 69) 16	0.0006	_					
	Characteristic Age, median Female Caucasian	81-100 (256) 55 (49, 63) 24 89	(576) 56 (50, 65) 24 93	(631) 58 (52, 66) 17 93	(193) 59 (51, 69) 16 89	0.0006 0.008 0.11	_					
	Characteristic Age, median Female Caucasian Diabetes	81-100 (256) 55 (49, 63) 24 89 16	(576) 56 (50, 65) 24 93 16	(631) 58 (52, 66) 17 93 15	(193) 59 (51, 69) 16 89 25	0.0006 0.008 0.11 0.04	-					
	Characteristic Age, median Female Caucasian Diabetes Hypertension	81-100 (256) 55 (49, 63) 24 89 16 52	(576) 56 (50, 65) 24 93 16 50	(631) 58 (52, 66) 17 93 15 49	(193) 59 (51, 69) 16 89 25 49	0.0006 0.008 0.11 0.04 0.88						
	Characteristic Age, median Female Caucasian Diabetes Hypertension Prior MI	81-100 (256) 55 (49, 63) 24 89 16 52 25	(576) 56 (50, 65) 24 93 16 50 16	(631) 58 (52, 66) 17 93 15 49 15 15	(193) 59 (51, 69) 16 89 25 49 17	0.0006 0.008 0.11 0.04 0.88 0.008						
	Characteristic Age, median Female Caucasian Diabetes Hypertension Prior MI Smoker	81-100 (256) 55 (49, 63) 24 89 16 52 25 44	(576) 56 (50, 65) 24 93 16 50 16 39	(631) 58 (52, 66) 17 93 15 49 15 31	(193) 59 (51, 69) 16 89 25 49 17 23	0.0006 0.008 0.11 0.04 0.88 0.008 < 0.001						
	Characteristic Age, median Female Caucasian Diabetes Hypertension Prior MI Smoker Prior statin	81-100 (256) 55 (49, 63) 24 89 16 52 25 44 38	(576) 56 (50, 65) 24 93 16 50 16 39 25	(631) 58 (52, 66) 17 93 15 49 15 31 24	(193) 59 (51, 69) 16 89 25 49 17 23 15	0.0006 0.008 0.11 0.04 0.88 0.008 < 0.001 < 0.001						
	Characteristic Age, median Female Caucasian Diabetes Hypertension Prior MI Smoker Prior statin Total cholesterol, baseline	81-100 (256) 55 (49, 63) 24 89 16 52 25 44 38 190	(576) 56 (50, 65) 24 93 16 50 16 39 25 182	(631) 58 (52, 66) 17 93 15 49 15 31 24 176	(193) 59 (51, 69) 16 89 25 49 17 23 15 162	0.0006 0.008 0.11 0.04 0.88 0.008 < 0.001						
	Characteristic Age, median Female Caucasian Diabetes Hypertension Prior MI Smoker Prior statin	81-100 (256) 55 (49, 63) 24 89 16 52 25 44 38	(576) 56 (50, 65) 24 93 16 50 16 39 25	(631) 58 (52, 66) 17 93 15 49 15 31 24	(193) 59 (51, 69) 16 89 25 49 17 23 15	0.0006 0.008 0.11 0.04 0.88 0.008 < 0.001 < 0.001						

	Baseline Characteristics th	at Influence Achievi	ence Achieving Lower LDL Levels			
	More likely to achieve		Less likely to achieve			
	 Older Male Diabetic Lower baseline total cholesterol and LD 	•	Prior MI Prior coronary artery bypass graft Cigarette smoker Prior statin before study initiation			
Study Outcomes	Efficacy Outcomes:					
		Composite Endpoint				
	LDL Level (mg/dL) H	azard Ratio	95% Confidence Interval			
	61-80	0.80	0.59 to 1.07			
	41-60	0.67	0.50 to 0.92			
	≤40	0.61	0.40 to 0.91			
	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in adve 	rse events betwee	dL when compared to patients with n LDL groups including muscle side al adverse effects, suicide/trauma			
Author's Conclusion	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in adve effects, liver side effects, hemory death) Not necessary to lower the dose of stee No association between the achieved 	rse events betwee hagic stroke, retir atin based on LDL	n LDL groups including muscle side al adverse effects, suicide/trauma levels			
Conclusion	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in advereffects, liver side effects, hemoredeath) Not necessary to lower the dose of steme of the second sec	rse events betwee hagic stroke, retin atin based on LDL I LDL level and adv	n LDL groups including muscle side al adverse effects, suicide/trauma levels erse events of statins over a 2-year			
	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in advereffects, liver side effects, hemoredeath) Not necessary to lower the dose of stendeath) Not necessary to lower the achieved period. <u>Strengths:</u> Assessed efficacy and safety outcome Variety of LDL levels evaluated Endpoints were adjudicated by an independent committee 	rse events betwee rhagic stroke, retir ratin based on LDL LDL level and adv <u>Limitations</u> • Small n effects, • Applies • Distribu • Did not • Post-ho	n LDL groups including muscle side al adverse effects, suicide/trauma levels erse events of statins over a 2-year			
Conclusion Critique	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in advereffects, liver side effects, hemoredeath) Not necessary to lower the dose of stematic strengths: No association between the achieved period. <u>Strengths:</u> Assessed efficacy and safety outcome Variety of LDL levels evaluated Endpoints were adjudicated by an independent committee Duration of follow-up is 2 years 	rse events betwee hagic stroke, retin atin based on LDL LDL level and adv <u>Limitations</u> Small n effects, Applies Distribu Did not Post-ho Only ev	n LDL groups including muscle side al adverse effects, suicide/trauma levels erse events of statins over a 2-year umber of patients experience side lack of power to determine different to secondary prevention only ution of LDL in the LDL < 40 group assess neurocognitive changes oc analysis – results only exploratory aluated LDL levels 4 months post Ad			
Conclusion	 ≥ 80 mg/dL (p < 0.01) <u>Safety Outcomes:</u> No significant difference in advereffects, liver side effects, hemoredeath) Not necessary to lower the dose of stendeath) Not necessary to lower the achieved period. <u>Strengths:</u> Assessed efficacy and safety outcome Variety of LDL levels evaluated Endpoints were adjudicated by an independent committee 	rse events betwee hagic stroke, retin atin based on LDL LDL level and adv <u>Limitations</u> • Small n effects, • Applies • Distribu • Did not • Only events • ardless of LDL levents	n LDL groups including muscle side al adverse effects, suicide/trauma levels erse events of statins over a 2-year umber of patients experience side lack of power to determine different to secondary prevention only ution of LDL in the LDL < 40 group assess neurocognitive changes oc analysis – results only exploratory aluated LDL levels 4 months post Ad			

Objective	Evaluate the safety achieving very low LDL levels, either LDL – C < 30 mg/dL or ≥ 70% reduction i LDL-C, while on rosuvastatin 20 mg Methods							
Study Design	Post-hoc analysis,	double-blind, pla						
Patient Selection	Inclusion: • Men ≥ 50 ye • No history c • No history c • LDL-C < 130	ears and women of diabetes of cardiovascular	≥ 60 years disease -	 Exclusion: Pre-existing diabetes Previous use of lipid lowering medications SBP > 180 mmHg or DBP > 100 mmHg Cancer (except basal or squamous cell carcinoma of the skin) in the last 5 years TSH > 1.5 x ULN or ALT > 2 x ULN, CK > 3 x ULN, Cr > 2.0 mg/dL Recent alcohol or drug abuse 				
Outcomes	Primary Outcome: was adjudicated.	Adverse reaction	n, hemorrhagic st	roke was the only a				
Statistical Analysis	Cox proportional h	nazard for proper	nsity - adjusted an	alysis				
Characteristics		Characteristic Age Women	Selected Baseline C LDL < 30 mg/dL (N = 767) 66 (61-72) 32.2 %	LDL ≥ 30 mg /dL (N = 7387) 66 (60-71) 38.9%	p value 0.62 <0.001			
		Caucasian BMI	<u>32.2 %</u> 69.6% 29.3 (26.2-33.2)	38.9% 72.6% 28.2 (25.2-31.9)	<0.001 0.001 <0.0001			
		Systolic BP Metabolic Syndrome Impaired	<u>136 (125-148)</u> 51.6% <u>36.3%</u>	134 (124-145) 40.3% 30.6%	0.047 <0.001 0.001			
		fasting glucose Adherence to study medication	97.8%	89.0%	<0.0001			
		Total cholesterol	166 (146-186)	187 (171-201)	<0.0001			
		Triglycerides HDL LDL	134 (93-206) 46 (38-56) 86 (70-100)	118 (84-166) 49 (41-60) 109 (97-120)	<0.0001 <0.0001 <0.0001			
		Hemoglobin A1C	5.7 (5.4-5.9)	5.7 (5.4-5.9)	0.29			

			Characteristics that	Influenc	e Achieving Ll	DL < 30 mg/dL			
		•	Men						
		•	Black						
	 Have metabolic syndrome or its components 								
			 Impaired fast 	ing glucos	se				
			 Higher triglyc 	erides					
			 Higher BMI 						
			o Lower high-de	ensity lipo	oprotein (HDL)) levels			
Study Outcomes	•					pairment, fatigue or he			
		-		hose who	o achieved Ll	DL < 30 mg/dL to those	who		
		achieved > 30 mg							
	•			-		who achieved \ge 70 % re	duction in		
		LDL to those who	achieved < 70 % red	uction ir	n LDL				
			Selective	Adjuster	d Adverse Eve	ints			
			LDL < 30 mg/c	-					
		Adverse Event	LDL < 30 mg/dL		30 mg /dL	Adjusted Relative Risk	р		
			(N = 767)	(N	= 7387)		value		
			N (Incidence Rate)	N (Inci	dence Rate)				
		Any	620 (103)		0 (106.5)	1.10 (1.01-1.21)	<0.05		
		Hepatobiliary	30 (1.7)	14	19 (0.9)	1.77 (1.15-2.73)	<0.01		
		Disorders							
		Psychiatric	69 (4.0)	53	34 (3.4)	1.40 (1.06-1.85)	<0.01		
		Disorders Renal and urinary	107 (6.4)	6	76 (4.3)	1.51 (1.21-1.90)	<0.001		
		disorders	107 (6.4)	0.	0 (4.3)	1.51 (1.21-1.90)	<0.001		
		Physician- reported	34 (1.9)	1	75 (1.1)	2.10 (1.39-3.19)	<0.001		
		hematuria	51(1.5)		3 (1.1)	2.10 (1.05 5.15)	0.001		
		Insomnia	27 (1.5)	19	95 (1.2)	1.59 (1.03-2.48)	< 0.05		
		Diabetes	47 (2.6)		09 (1.3)	1.56 (1.09-2.23)	< 0.05		
Author's	•	Suggests statin the	erapy overall is well t	olerated	l at concentr	ations as low as 30 mg/	dL		
Conclusion	•					L compared to LDL-C > 3			
	•					an increased risk of her			
Critique		Strengths	•	İ	Limitations				
•	•		e function, hemorrha	gic •	Post- hoc a	nalysis			
		stroke and cancer		•		ess incidence of catarac	ts		
	•	Large sample size		•					
	•	Patients without o	linical ASCVD or	•					
		diabetes		•	 Distribution of LDL levels achieved in each 				
					group not specified				
				•		per of statistical tests pro	eformed		
				•		cated 1 ADR endpoint	cionneu		
	ים	uration of follow-up	is 1.9 years			Cated I Abit chupoint			
Take away	•		· ·	te who o	chioved I DI	levels > 30 mg/dL, those	that		
=		•	-			etes, insomnia and phys			
summary			-						
						n in incidence rates of n afety concerned of achie	-		
		levels of LDL.	emornagic stroke, w	mult aft	potential Sa	nety concerned of achie	ving iow		
	_		a is with the achieve		al rather the	n the percentage of I DI	roduction		
	•	The safety concer	in is with the achieved	LDLIEV	rei rather tha	in the percentage of LDI	reduction.		

Objective	Cholesterol A Prespecified Analysis of the IMPROVE-IT Trial ¹² Evaluate the safety and efficacy of very low achieved LDL levels in patients receiving combination									
-		y with ezetimibe		-			-			
			N	lethods						
Study Design	• Ra	ndomized, doubl	e-bind, placeb	o controlled						
	• Pro	Pre-specified safety analysis								
	• Po	Post-hoc analysis for incidence of cataracts								
	 Int 	ervention group:	ezetimibe 10	mg daily plu	s simvastatin 40	mg daily				
	• Co	mparator group:	placebo plus s	imvastatin 4	10 mg daily					
	• No	medication adju	stments made	if patient's	LDL was low					
		tients with a LDL				n efficacy or pr	especified safe			
		ent prior to the 1								
		e-specified group	s based on LDI			; 30 – 49 mg/c	lL; < 30 mg/dL			
tient Selection	Inclus				<u>xclusion:</u>					
		CS within the pre	• ·							
		DL level of 50 to 1		-						
		rior lipid lowering		•						
		DL level of 50 to 1		ot on 🔹			nts more poten			
	p	rior lipid lowering	(therapy)		than simvasta	atin 40 mg				
Outcomes	• Sa	fety: elevated live	er enzymes, cr	eatinine kin	ase levels, myopa	athy, rhabdom	yolysis, adverse			
	 <u>Safety</u>: elevated liver enzymes, creatinine kinase levels, myopathy, rhabdomyolysis, adver hepatobiliary events, cancer, adverse event leading to study drug discontinuation, heart f 									
	leading to hospitalization, non-cardiovascular death, neurocognitive effects and a post-hoc									
	an	analysis of cataract – related adverse event								
	• <u>Eff</u>	i icacy : composite	of cardiovascu	ular death, n	nyocardial infarc	tion, unstable	angina requirin			
	ho	spitalization, core	onary revascul	arization aft	er 30 days, strok	e (hemorrhagi	c and ischemic)			
	• Eff	icacy endpoints (except revascu	ularization),	muscle-related e	events and can	cer were the or			
		dpoints adjudicat								
tistical Analysis		x proportional ha			-	actors				
		plan-Meier used			•					
	• Co	 Cochran-Armitage to trend independent risk factors among LDL groups 								
				sults						
Baseline	15,28	1 included in anal	ysis							
characteristics										
	Concomitant Medications									
		Medication	< 30 (971)	30 – 49 (4780)	50 – 69 (5504)	≥ 70 (4026)	p value			
		ACEi or ARB	437 (45.0)	1944 (40.7		1604 (39.9)	0.03			
		ASA	392 (40.4)	1910 (40.7	[']) 2244 (40.8)	1830 (45.5)	< .001			
		β blocker	334 (34.4)	1550 (32.4)	0) 1872 (34.0)	1497 (37.2)	< .001			
		Statin	217 (22.3)	1352 (28.3) 1958 (35.6)	1723 (42.8)	< .001			
			· - /			· - /				

Characteristic	< 30	30 – 49	50 – 69	≥ 70	p value
	(971)	(4780)	(5504)	(4026)	
Ezetimibe	824 (84.9)	3433 (71.8)	2414 (43.9)	878 (21.8)	< .001
Age	64.5	63.9	62.9	61.7	< .001
(IQR)	(57.9-71.5)	(57.9-71.5)	(57.4-71.7)	(55.8-69.3)	
Male	773 (79.6)	3746 (78.4)	4190 (76.1)	2936 (72.9)	< .001
White	769 (79.2)	3980 (83.3)	4645 (84.4)	3431 (85.2)	< .001
BMI	28.4	27.7	27.5	27.2	< .001
(IQR)	(25.8-32.0)	(25.0-31.2)	(24.8-30.8)	(24.7-30.5)	
		Comorbid	ities		
DM	403 (41.5)	1432 (30.0)	1327 (24.1)	940 (23.3)	< .001
HTN	642 (66.1)	2944 (61.6)	3251 (59.1)	2443 (60.7)	0.006
Current	272 (28.0)	1384 (29.0)	1799 (32.7)	1568 (39.0)	< .001
Smoker					
MI Hx	169 (17.5)	866 (18.1)	1137 (20.7)	979 (24.3)	< .001
PCI Hx	156 (16.1)	810 (16.9)	1055 (19.2)	928 (23.1)	< .001
CABG Hx	57 (5.9)	376 (7.9)	522 (9.5)	423 (10.5)	< .001
PAD Hx	45 (4.6)	243 (5.10	287 (5.2)	258 (6.4)	0.004
		Baseline Lipi	d Panel		
тс	155	160	163	168	< .001
	(136-174)	(141-178)	(145-181)	(151-186)	
LDL	85	93	96	97	< .001
	(70-100)	(77-108)	(80-112)	(85-113)	
HDL	38	39	40	41	< .001
	(32-46)	(33-48)	(33-49)	(34-50)	
	141	120	117	122	0.002
Triglycerides	747				

	Characteristics that Influence Achieving LDL Levels < 30 mg/dL								
	More likely to Achieve		Less Likely to Achieve						
•	Male	•	Smoker						
•	Non-white	•	Have prior myocardial infarction,						
•	Higher BMI		percutaneous coronary intervention, or						
•	Pre-existing diabetes		coronary artery bypass graft						
•	Treated with statin prior to ACS								

			Selected Prespe	cified Saf	ety Events	s by A	chiev	ed LDL I	Level (mg/d	L) at 1 month	
			afety Endpoint HR 95% CI)	< 30	D	30 -	- 49	5	69 – 69	p value (Trend)	
			Neurocognitive events (all) Hemorrhagic Stroke Cancer		0.913 1.045 (0.545- (0.772-		772-	(204 0.92-	0.84	
		Н			29) 6	1.41	5	0	574)).58	0.69	
		Ca			11-1.26) 8 91-1.53)	1.12	-1.84 2 5-1.3	1	0.33-1.04) 11 0.96-1.29)	0.14	
			Rate of Prima				<u>-1.5</u>			ract-Related Ev	vents by
			at 7 years by Achi		-		-			el (mg/dL) at 1 95 % Con	L month
			< 30 30 – 49		31.9% 29.9%		-	Level < 30		0.78-2	val
			50 – 69		30.8%		-	30 – 49	9 1.20	0.96-2	1.50
			≥ 70		36%		L	50 - 69	9 1.08	0.86-1	1.34
			1 - month LI	-	ed Mean LDL Levels LDL C Level 4-72 months (mg/dL)						
			≥ 70			79.9					
			50-69		63.3 48.3			.3			
			30-49								
			< 30			34.4					
Author's			ts with LDL level of	-	-						a median
Conclusion			-up over 6 years w		-	-				-	
	• •		I patients who ach rically the risk of an		-				-		DL < 30
Critique			Strength	s					Lim	itations	
•	• F	Rando	mized	_	Grouped based on LDL level at one month						month
	• E	Evalua	ted both safety an	d efficac	• Included only s				only secondary prevention patients		
			endpoints of inter			• Excluded patients on other lipid lowering age					vering agen
			rrhagic stroke, can	icer, cata	iracts,		Distribution of LDL < 30 mg/dL				
			cognitive events) sample size			 Mean LDL level in the < 30 mg/dL was 3 mg/dL 				/as 34.4	
			duration longer the	an other	s	mg/dLLow event rate for some events therefor					erefore
		-	cation committee				power was not met to determine difference				
						 Post-hoc analysis for incidence of cataracts 					ataracts
								-	-	dicated (only ated events a	-
											nd cancer)
	Dura	ation	of follow-up: media	an of 6 –	years						nd cancer)
Take away	• •	No sig	nificant difference	in adver	se events	regai	rdles	s of acł	nieved LDL	level	
Take away summary	• N	No sig Nhen		in adver y of patie	se events ents who a	regai achiev	rdles ved v	s of acł very lov	nieved LDL v levels of	level LDL to LDL lev	vels above 3

 Table 8: Robinson JG, Rosenson RS, Farnier M et al. Safety of Very Low Low-Density Lipoprotein Cholesterol Levels with

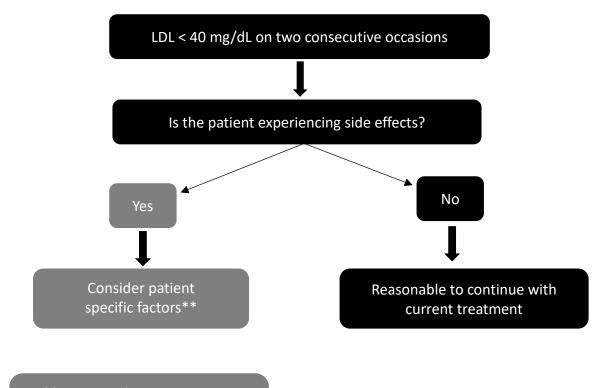
 Alirocumab Pooled Data from Randomized Trials¹³

Evaluate the safety of patients with LDL values < 25 mg/dL or < 15 mg/dL in the ODYSSEY prog								
Met	thods							
Pooled data from 14 randomized, double blinded trials								
• Analysis of adverse events in patien	ts who had 2 consecut	tive low LDL	levels (defined in					
 achieved by week 8. Intervention: alirocumab in addition to stable statin therapy (except ODYSSEY MONO) Stable statin therapy: maximally tolerated (defined in 6 of the trials) 								
					Inclusion:	Exclusion:		
					Heterozygous familial	 Patients w 	vith recent A	ACS, stroke, or PVD
hypercholesteremia (HeFH)	interventi	on in the pr	evious 3 months					
High cardiovascular risk	Prior hem	orrhage stro	oke					
_		-						
	-							
Treatment-emergent adverse events (TE	EAEs) that occurred, w	orsened or	became serious foll					
the first LDL value < 25 mg/dL or < 15 m	g/dL							
Cox proportional for propensity analysis								
- LDL < 15 Hig/uL. 514	+ (9.4%)							
	ics from Pooled Data of							
Characteristics								
	≥ 25 (mg/dL) < 2	25 (mg/dL)	< 15 (mg/dL)					
(pooled from phase 2 and 3)	≥ 25 (mg/dL) < 2 (2187)	(839)	< 15 (mg/dL) (314)					
Age, yrs	≥ 25 (mg/dL) < 2	(839) 1.9 ± 9.8	< 15 (mg/dL) (314) 61.8 ±9.9					
	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7	(839)	< 15 (mg/dL) (314)					
Age, yrs Male	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 7	(839) 1.9 ± 9.8 5.0 (629)	< 15 (mg/dL) (314) 61.8 ±9.9 74.8 (235)					
Age, yrs Male Race, white	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 88.5 (2,213) 9	(839) 5.0 (629) 1.1 (764)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282)					
Age, yrs Male Race, white BMI	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 9 30.1 ± 6.0 2	(839) (1.9 ± 9.8) (5.0 (629) (1.1 (764) (9.7 ± 4.6)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4					
Age, yrs Male Race, white BMI Calculated LDL	≥ 25 (mg/dL) (2187) 58.6 ± 11.4 57.3 98 (1,434) 88.5 (2,213) 30.1 ± 6.0 2 134.3 ± 48.9 10 (2 (2 (2 (2) 2) (2) 2) (2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3					
Age, yrs Male Race, white BMI Calculated LDL HDL	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 7 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9					
Age, yrs Male Race, white BMI Calculated LDL	≥ 25 (mg/dL) < 2	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 00.3 ± 28.5 6.6 ± 11.0 146.9	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides	≥ 25 (mg/dL) < 2	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0 146.9 08.8-206.2)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 7 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (10) 5.98 ± 0.84 6.	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C Medic	≥ 25 (mg/dL) (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (10 5.98 ± 0.84 6. cal History (pool of phase	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C Medic CHD	≥ 25 (mg/dL) < 2(2187) 58.6 ± 11.4 57.3 98 (1,434) 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (10) 5.98 ± 0.84 6. cal History (pool of phase) 60.6 (2,061) 7	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3) 6.9 (624)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 57.3 98 (1,434) 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (10 5.98 ± 0.84 6. cal History (pool of phase 60.6 (2,061) 7 29.9 (709) 40 (10 50 50 50 50 50 50 50 5	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3) 6.9 (624) 0.45 (328)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes	≥ 25 (mg/dL) (2187) 58.6 ± 11.4 57.3 98 (1,434) 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (100 5.98 ± 0.84 6.06 (2,061) 7 29.9 (709) 40 27.9 (662) 3	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3) 6.9 (624) 0.45 (328) 7.1 (301)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes HeFH	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) (10) 5.98 ± 0.84 6. cal History (pool of phase) 60.6 (2,061) 7 29.9 (709) 40 27.9 (662) 3 33.5 (794) 1	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3) 6.9 (624) 0.45 (328) 7.1 (301) 10.2 (83)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128) 9.5 (29)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes HeFH High-intensity statin	≥ 25 (mg/dL) < 2 (2187) 58.6 ± 11.4 6 57.3 98 7 (1,434) 7 88.5 (2,213) 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (188.0-170.8) (88.0-170.8) (10 5.98 ± 0.84 6. 60.6 (2,061) 7 29.9 (709) 40 27.9 (662) 3 33.5 (794) 1 55.9 (1,325) 5	(839) 1.9 ± 9.8 5.0 (629) 1.1 (764) 9.7 ± 4.6 0.3 ± 28.5 6.6 ± 11.0 146.9 08.8-206.2) 17 ± 0.98 e 3) 6.9 (624) 0.45 (328) 7.1 (301) 10.2 (83) 3.0 (430)	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128) 9.5 (29) 49.5 (151)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes HeFH High-intensity statin Other lipid lowering therapy	≥ 25 (mg/dL) (2187)< 2 (2187) 58.6 ± 11.4 6 $57.3 98$ 7 $(1,434)$ 8 $88.5 (2,213)$ 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) $(88.0-170.8)$ (10) 5.98 ± 0.84 6cal History (pool of phase) $60.6 (2,061)$ 7 $29.9 (709)$ 40 $27.9 (662)$ 3 $33.5 (794)$ 1 $55.9 (1,325)$ 5 $30.6 (725)$ 2	(839) 1.9 ± 9.8 $5.0 (629)$ $1.1 (764)$ 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 $0.8.8-206.2$) 17 ± 0.98 e 3) $6.9 (624)$ $0.45 (328)$ $7.1 (301)$ $10.2 (83)$ $3.0 (430)$ $3.6 (191)$	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128) 9.5 (29) 49.5 (151) 23.3 (71)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes HeFH High-intensity statin	≥ 25 (mg/dL) (2187)< 2 (2187) 58.6 ± 11.4 6 $57.3 98$ 7 $(1,434)$ 8 $88.5 (2,213)$ 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) $(88.0-170.8)$ (10) 5.98 ± 0.84 6cal History (pool of phase) $60.6 (2,061)$ 7 $29.9 (709)$ 40 $27.9 (662)$ 3 $33.5 (794)$ 1 $55.9 (1,325)$ 5 $30.6 (725)$ 2	(839) 1.9 ± 9.8 $5.0 (629)$ $1.1 (764)$ 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 $0.8.8-206.2$) 17 ± 0.98 e 3) $6.9 (624)$ $0.45 (328)$ $7.1 (301)$ $10.2 (83)$ $3.0 (430)$ $3.6 (191)$	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128) 9.5 (29) 49.5 (151) 23.3 (71)					
Age, yrs Male Race, white BMI Calculated LDL HDL Fasting Triglycerides Baseline HbA1C CHD CHD risk equivalents Type 2 Diabetes HeFH High-intensity statin Other lipid lowering therapy	≥ 25 (mg/dL) (2187)< 2 (2187) 58.6 ± 11.4 6 $57.3 98$ 7 $(1,434)$ 8 $88.5 (2,213)$ 9 30.1 ± 6.0 2 134.3 ± 48.9 10 51.1 ± 14.3 46 122.0 (88.0-170.8) $(88.0-170.8)$ (10) 5.98 ± 0.84 6cal History (pool of phase) $60.6 (2,061)$ 7 $29.9 (709)$ 40 $27.9 (662)$ 3 $33.5 (794)$ 1 $55.9 (1,325)$ 5 $30.6 (725)$ 2	(839) 1.9 ± 9.8 $5.0 (629)$ $1.1 (764)$ 9.7 ± 4.6 0.3 ± 28.5 5.6 ± 11.0 146.9 $0.8.8-206.2$) 17 ± 0.98 e 3) $6.9 (624)$ $0.45 (328)$ $7.1 (301)$ $10.2 (83)$ $3.0 (430)$ $3.6 (191)$	<15 (mg/dL) (314) 61.8 ±9.9 74.8 (235) 89.8 (282) 29.8 ± 4.4 95.7 ± 28.3 45.1 ± 10.9 168.0 (126.5-231.0) 6.22 ± 0.94 73.4 (224) 45.9 (140) 42.0 (128) 9.5 (29) 49.5 (151) 23.3 (71)					
	 Pooled data from 14 randomized, d. Analysis of adverse events in patien objective) Consecutive levels defined as ≥ 21 d. Alirocumab dosing was 150 mg even every 2 weeks and increased to 150 achieved by week 8. Intervention: alirocumab in addition Stable statin therapy: maximally tole Comparator: placebo or ezetimibe Inclusion: Heterozygous familial hypercholesteremia (HeFH) High cardiovascular risk LDL ≥ 70 mg/dL Treatment-emergent adverse events (TE the first LDL value < 25 mg/dL or < 15 m Cox proportional for propensity analysis 0 0 1,153 had low levels of LDL 0 1,153 had low levels of LDL 0 1,153 had low levels of LDL 0 1,154 had 1,1554 had 1,1	 Analysis of adverse events in patients who had 2 consecutions objective) Consecutive levels defined as ≥ 21 days apart Alirocumab dosing was 150 mg every 2 weeks in most triate every 2 weeks and increased to 150 mg every 2 weeks if of achieved by week 8. Intervention: alirocumab in addition to stable statin therations: alirocumab in addition to stable statin therations: alirocumab in addition to stable statin therations: alirocumab in addition to stable statin theration: alirocumab billial hypercholesteremia (HeFH) High cardiovascular risk LDL ≥ 70 mg/dL Treatment-emergent adverse events (TEAEs) that occurred, we the first LDL value < 25 mg/dL or < 15 mg/dL 3,340 patients on alirocumab 0 1,153 had low levels of LDL on 2 consecutive occa LDL < 25 mg/dL: 839 (25.1%) LDL < 15 mg/dL: 314 (9.4%) 	 Pooled data from 14 randomized, double blinded trials Analysis of adverse events in patients who had 2 consecutive low LDL objective) Consecutive levels defined as ≥ 21 days apart Alirocumab dosing was 150 mg every 2 weeks in most trials. Some trievery 2 weeks and increased to 150 mg every 2 weeks if desired LDL rachieved by week 8. Intervention: alirocumab in addition to stable statin therapy (except 0 Stable statin therapy: maximally tolerated (defined in 6 of the trials) Comparator: placebo or ezetimibe Inclusion: Heterozygous familial hypercholesteremia (HeFH) High cardiovascular risk LDL ≥ 70 mg/dL Treatment-emergent adverse events (TEAEs) that occurred, worsened or the first LDL value < 25 mg/dL or < 15 mg/dL 3,340 patients on alirocumab IDL < 25 mg/dL: 314 (9.4%) 					

		Factors Associated with LDL < 25 mg/dL								
		Lower baseline LDL								
		 Higher triglycerides and lower HDL Male, older, with a lower BMI 								
		•								
		•	 Did not have HeFH Cardiovascular Disease 							
			 Cardiovascular Disease Type II Diabetes and higher hemoglobin A1C 							
		•	 Type II Diabetes and higher hemoglobin A1C Use of 150 mg every 2 weeks and baseline LDL < 160 mg/dL 							
		•	Use of 15	50 mg ever	y z weeks	s and base	line LDL < .	160 mg/a	L	
Study Outcomes	1						_			
		Sele Adverse Event				-	verse Even			
		Adverse	Event	LDL ≥ 25 (2,5		LDL < 25 (83		LDL < 15	-	
		Neurocog	nitivo	1.0 (0.6		(31 0.3		
		disorders		1.0 ([0.		[0.		
		Amnesia		0.2		0.1		(0.		
	1			[0.		[0.				
		Aphasia		< 0.1		0.1		C)	
				[0.		[0.				
		Confused	state	0.3	(7),	0.1	(1),	C)	
				[0.	2]	[0.				
		Dementia	1	C)	0.1		C)	
		Frontoter	nnoral	0	1	[0. 0.1		0.3	(1)	
		Dementio	-			[0.		[0.		
		Ophthalm		1.9 (47),	1.5 (1.6		
			•	[1.		[1.		[1.		
		Cataract		0.8 (19),	2.5 (21),	2.9	(9),	
				[0.		[2.0		[2.	3]	
				% (n) [rate						
		*p=0.001	8 when co	mparing L	DL 2 25 m	ig/dL to < 2	25 mg/aL			
		Propens	sity Analy	sis of Seleo	ted Adve	rse Events	s in patient	ts with Lo	w LDL	
		Adverse Event	LDL ≥ 2	5 mg/dL	LDL < 2	5 mg/dL	Hazar	d 9!	5 % Confic	lence
			(23	371)		11)	Ratio		Interva	
		Neurocognitive disorders	1.1	(25)	0.6	5 (5)	0.38		(0.13-1.0)9)
		Ophthalmologic events	2.0	(47)	1.6	(13)	0.64		(0.31-1.3	31)
				(10)	2.6	(21)	3.4		(1.58-7.3	5) *
		Cataracts	0.8							
		Cataracts Values reported in								
		Values reported in	n % (n); *p	=0.0018						
Author's		Values reported in	n % (n); *p	=0.0018 acts in pa	tients wi		-		r this ma	y be due
Author's Conclusion	co	Values reported in ocreased incidence	n % (n); *p e of catara s as the p	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in acreased incidence onfounding factors	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in ocreased incidence	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in acreased incidence onfounding factors	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in acreased incidence onfounding factors	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in acreased incidence onfounding factors	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-
	co • Lo	Values reported in acreased incidence onfounding factors	e of catara s as the p of low LD	acts in pa	tients wi	were not	t randomi	zed.		-

Critique	Strengths Limitations
	Safety events of interest evaluated Limited LDL distribution
	Evaluated factors that increase risk of Efficacy not addressed
	low LDL Post-hoc analysis
	Multiple patient populations assessed
	(primary prevention, secondary
	prevention, familial, etc.)
	Multiple alirocumab doses
	Various background therapies
	Appropriate FLP draw (fasting and 6
	weeks)
	Verified that LDL was low with 2
	readings
	Used central lab
	Data monitoring committee member
	and independent physician monitored
	patients
	Propensity analysis to account for
	confounding factors
	Duration of follow and 20 months
	Duration of follow-up: 26 months
Take away	Although overall there was not a significant difference in adverse events regardless of LDL level,
summary	efficacy was not evaluated and therefore we do not know if it is efficacious. Thus, we do not know
	if the risk outweighs the benefits.

Study	ditional Studies Population (P) Intervention (I) Comparator (C) Outcomes (O)							
Hsia 2011 ¹⁴	 Patient without clinical ASCVD or diabetes Patient had LDL < 130 mg/dL C-reactive protein ≥ 2.0 mg/L Two LDL groups: > 50 mg/dL (n=4,000) < 50 mg/dL (n=4,154) 	rosuvastatin 20 mg daily	Placebo	 Significantly higher rate of any adverse drug events in the LDL < 50 mg/dL group compared to > 50 mg/dL group Higher rate of memory impairment and depression in the LDL > 50 mg/dL compared to the < 50 mg/dL group No difference in incidence of cancer or cataracts 				
Giugliano 2017 ¹⁵	 40-85 years old with stable atherosclerotic disease Five LDL groups: < 20 mg/dL (n=2,669) 20 to < 50 mg/dL (n=8,003) 50 to < 70 mg/dL (n=3,444) 70 to < 100 mg/dL (n=7,471) > 100 mg/dL (n=4,395) 	evolocumab 140 mg every 2 weeks or 420 mg once monthly + statin therapy	Placebo + statin therapy	No difference in adverse events including neurocognitive events, cataract related events, new or progressive malignancy and hemorrhagic stroke.				
Giugliano 2017 ¹⁶	 40-85 years old with stable atherosclerotic disease Three LDL groups: < 25 mg/dL (n=?) 25 to 39 mg/dL (n=?) ≥ 40 mg/dL (n=?) 	evolocumab 140 mg every 2 weeks or 420 mg once monthly + statin therapy	Placebo + statin therapy	No difference in change of cognitive function when comparing different levels of achieved LDL.				
LaRosa 2007 ¹⁷	 Patients with clinical atherosclerotic disease Average age of 61 Five LDL groups: < 64 mg/dL (n=1,836) 64 to < 77 mg/dL (n=1,932) 77 to < 90 mg/dL (n=1,987) 90 to < 106 mg/dL (n=2,030) ≥ 106 mg/dL (n=1,984) 	atorvastatin 80 mg daily	atorvastatin 10 mg daily	No difference in adverse events including death from cancer and hemorrhagic stroke. *neurocognitive events and cataracts were not evaluated				


Conclusions and Recommendations

I. Summary of Primary Literature

PROVE-IT TIMI 22 (2005)	JUPITER (2014)
 No difference in safety outcomes Additional benefit is not apparent between achieving LDL of 41- 60 mg/dL versus < 40 mg/dL 	Increased incidence in diabetes, insomnia and hematuria in LDL < 30 mg/dL
IMPROVE-IT (2017) No difference in safety outcomes No significant difference in efficacy between LDL < 30 vs. LDL 30 - 70 mg/dL	 ALIROCUMAB POOLED TRIALS (2017) No difference in overall safety outcomes Increase incidence of cataracts in patients with LDL < 25 mg/dL compared to > 25 mg/dL
	with LDL < 25 mg/dL compared to >

No difference in safety outcomes with the exception of increased rates of memory impairment and depression in patients achieving LDL \ge 50 mg/dL vs. < 50 mg/dL

II. Recommendations

**ASCVD Risk, ASCVD History, Control of other risk factors, Age

References:

- Atherosclerosis. http://www.heart.org/HEARTORG/Conditions/Cholesterol/WhyCholesterolMatters/Atheroscler osis UCM 305564 Article.jsp#.W42zydgzrq2 (accessed 2018 Sept 3)
- 2. Heart Disease. Centers for Disease Control. https://www.cdc.gov/nchs/fastats/heartdisease.htm (accessed 2018 Sept 3)
- Stone NJ, Robinson JG, Lichtenstein AH et al. 2013 ACC/AHA Guideline on The Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2013;129: S1–S45
- 4. Jellinger PS, Handelsman Y, Rosenblit PD et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. *Endocr Pract*. 2017;23: 1-87
- 2017 Focused Update of the 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk. *Journal of The American College of Cardiology* 2017. 23976; DOI: 10.1016/j.jacc.2017.07.745
- Jacobson TA, Ito MK, Maki KC et al National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 1 Full Report. *Journal of Clinical Lipidology* 2015; 9: 129-169
- 7. VA/DoD Clinical Practice Guidelines for the Management of Dyslipidemia for Cardiovascular Risk Reduction. *Department of Veterans Affairs, Department of Defense*. 2014 (3): 1-112
- Botham KM, Mayes PA. Cholesterol Synthesis, Transport, & Excretion. In: Rodwell VW, Bender DA, Botham KM, Kennelly PJ, Weil P. eds. *Harper's Illustrated Biochemistry, 31e* New York, NY: McGraw-Hill;

http://accesspharmacy.mhmedical.com.uiwtx.idm.oclc.org/content.aspx?bookid=2386§ioni d=187832435. Accessed August 13, 2018.

- Bandyopadhyay D, Qureshi A, Ghosh S et al. Safety and Efficacy of Extremely Low LDL-Cholesterol Levels and Its Prospects in Hyperlipidemia Management. *Journal of Lipids.* 2017 (2018):1-8
- Wiviott SD, Cannon CP, Morrow DA et. al. Can Low Density Lipoprotein Be Too Low? The Safety and Efficacy of Achieving Very Low, Low - Density Lipoprotein with Intensive Statin Therapy. A PROVE IT- TIMI 22 Substudy. *Journal of American College of Cardiology*. 2005; 46 (8): 1411-1416
- 11. Everett BM, Mora S, Glynn RJ, et al. Safety Profile of Subjects Treated to Very Low Low-Density Lipoprotein Cholesterol Levels (< 30 mg/dL) with Rosuvastatin 20 mg daily (from JUPITER). *American Journal of Cardiology*. 2014; 114: 1682-1689
- 12. Giugliano RP, Wiviott SD, Blazing MA et al. Long-term Safety and Efficacy of Achieving Very Low Levels of Low-Density Lipoprotein Cholesterol a Prespecified Analysis of the IMPROVE-IT Trial. *JAMA Cardiology*. 2017; 2 (5):547-555
- 13. Robinson JG, Rosenson RS, Farnier M et al. Safety of Very Low Low-Density Lipoprotein Cholesterol Levels with Alirocumab Pooled Data from Randomized Trials. *Journal of the American College of Cardiology*. 2017; 69 (5): 471-482
- 14. Jsai J, MacFadyen JG, Monyak J et al. Cardiovascular Event Reduction and Adverse Events Among Subjects Attaining Low-Density Lipoprotein Cholesterol < 50 mg/dL with Rosuvastatin. *Journal of American College of Cardiology.2011*; 57(16):1666-1675

- 15. Giugliano RP, Pedersen TR, Park JG et al. Clinical efficacy and safety of achieving very low LDL cholesterol concentrations with PCSK9 inhibitor Evolocumab: a prespecified secondary analysis of the FOURIER trial. *Lancet*. 2017; 390: 1962-1971
- 16. Giugliano RP, Mach F, Zavitz K et al. Cognitive Function in a Randomized Trial of Evolocumab. *New England Journal of Medicine*. 2017; 377:633-643
- LaRosa JC, Grundy SM, Kastelein JP et al. Safety and Efficacy of Atorvastatin-Induced Very Low-Density Lipoprotein Cholesterol Levels in Patients with Coronary Heart Disease (a Post Hoc Analysis of the Treating to New Target [TNT] Study. *American Journal of Cardiology*. 2007; 100:747-752

Appendices

A. 2013 ACC/AHA Cholesterol Guideline: Initiation of Statin Therapy³

Clinical ASCVD

• Age ≤ 75 years: High-intensity statin

• Age > 75 years: Moderate-intensity statin

LDL - C ≥ 190 mg/dL

High-intensity statin

Aged 40 - 75 years + diabetes + LDL- C 70 to 189 mg/dL

- Estimated 10-year ASCVD risk < 7.5 % : Moderate-intensity statin
- Estimated 10-year ASCVD risk \geq 7.5 % : High-intensity statin

No diabetes, LDL - C 70 to 189 mg/dL and not on statin therapy

- Estimated 10-year ASCVD risk ≥ 7.5 % : Moderate to high intensity statin
 Estimated 10-year ASCVD risk 5 to < 7.5 % : Moderate-intensity statin
- B. 2017 ACC Focused Update: Initiation of Non-Statin Therapy⁵

Clinical ASCVD <u>without</u> comorbidities

- Initial non-statin add on therapy: ezetimibe
- Second add on or replacement therapy of ezetimibe: PCSK-9 inhibitors

Clinical ASCVD <u>with</u> comorbidities

• Consider either ezetimibe or PCSK-9 inhibitor as initial non-statin add on therapy

Baseline LDL - C \geq 190 mg/dL

• Consider either ezetimibe or PCSK-9 inhibitor as initial non-statin add on therapy

40 - 75 years + diabetes + LDL- C 70 to 189 mg/dL

• Consider ezetimibe

A 40 - 75 years + LDL - C 70 to 189 mg/dL + 10 -year ASCVD risk of $\geq 7.5\%$

• Consider ezetimibe